Math Virtual Learning

Calculus AB

Volume: The Disk Method

April 22, 2020

Calculus AB
 Lesson: April 22, 2020

Objective/Learning Target:

Students will calculate the volume of a solid of revolution using the disk method.

Warm-Up:

Watch Videos: Disk method around x-axis Disk method around y-axis

Read Article: Disk Method

Notes:

The Disk Method

The volume of the solid formed by revolving the region bounded by the graph of f and the x-axis $(a \leq x \leq b)$ about the x-axis is

$$
\text { Volume }=\pi \int_{a}^{b}[f(x)]^{2} d x
$$

Approximation by n rectangles

Examples:

EXAMPLE 1
 Finding the Volume of a Solid of Revolution

Find the volume of the solid formed by revolving the region bounded by the graph of $f(x)=-x^{2}+x$ and the x-axis about the x-axis.

SOLUTION Begin by sketching the region bounded by the graph of f and the x-axis. As shown in Figure 5.27(a), sketch a representative rectangle whose height is $f(x)$ and whose width is Δx. From this rectangle, you can see that the radius of the solid is

$$
\text { Radius }=f(x)=-x^{2}+x
$$

Using the Disk Method, you can find the volume of the solid of revolution.

$$
\begin{aligned}
\text { Volume } & =\pi \int_{0}^{1}[f(x)]^{2} d x & & \text { Disk Method } \\
& =\pi \int_{0}^{1}\left(-x^{2}+x\right)^{2} d x & & \text { Substitute for } f(x) . \\
& =\pi \int_{0}^{1}\left(x^{4}-2 x^{3}+x^{2}\right) d x & & \text { Expand integrand. } \\
& =\pi\left[\frac{x^{5}}{5}-\frac{x^{4}}{2}+\frac{x^{3}}{3}\right]_{0}^{1} & & \text { Find antiderivative. } \\
& =\frac{\pi}{30} & & \text { Apply Fundamental Theorem. } \\
& \approx 0.105 & & \text { Round to three decimal places. }
\end{aligned}
$$

(a) Plane region

FIGURE 5.27

(b) Solid of revolution

So, the volume of the solid is about 0.105 cubic unit.

Examples:

A regulation-size football can be modeled as a solid of revolution formed by revolving the graph of

$$
f(x)=-0.0944 x^{2}+3.4, \quad-5.5 \leq x \leq 5.5
$$

about the x-axis, as shown in Figure 5.30. Use this model to find the volume of a football. (In the model, x and y are measured in inches.)

SOLUTION To find the volume of the solid of revolution, use the Disk Method.

$$
\begin{aligned}
\text { Volume } & =\pi \int_{-5.5}^{5.5}[f(x)]^{2} d x & & \text { Disk Method } \\
& =\pi \int_{-5.5}^{5.5}\left(-0.0944 x^{2}+3.4\right)^{2} d x & & \text { Substitute for } f(x) . \\
& \approx 232 \text { cubic inches } & & \text { Volume }
\end{aligned}
$$

FIGURE 5.30 A football-shaped solid is formed by revolving a parabolic segment about the x-axis.

So, the volume of the football is about 232 cubic inches.

Practice:

1) Determine the volume of the solid obtained by rotating the region bounded by $y=x^{2}-4 x+5, x=1, x=4$, and the x-axis about the x-axis.
2) Find the volume of the solid of revolution generated by rotating the curve $y=x^{3}$ between $y=0$ and $y=4$ about the y-axis.

Answer Key:

Once you have completed the problems, check your answers here.

1) $\quad V=\int_{a}^{b} A(x) d x$
$=\pi \int_{1}^{4} x^{4}-8 x^{3}+26 x^{2}-40 x+25 d x$
$=\left.\pi\left(\frac{1}{5} x^{5}-2 x^{4}+\frac{26}{3} x^{3}-20 x^{2}+25 x\right)\right|_{1} ^{4}$
$=\frac{78 \pi}{5}$
2) $\quad \mathrm{Vol}=\pi \int_{c}^{d} x^{2} d y$

$$
=\pi \int_{0}^{4} y^{2 / 3} d y
$$

$$
=\pi\left[\frac{3 y^{5 / 3}}{5}\right]_{0}^{4}
$$

$$
=\frac{3 \pi}{5}\left[y^{5 / 3}\right]_{0}^{4}
$$

$$
=\frac{3 \pi}{5}[10.079-0]
$$

$$
=19.0 \mathrm{units}^{3}
$$

Additional Practice:

In your Calculus book read through Section 7.2 and complete problems 1, 3, 7, 9, 11, and 13

Interactive Practice

Extra Practice with Answers

